翻訳と辞書
Words near each other
・ Voies Ferrées des Landes
・ Voies navigables de France
・ Voietun
・ Voievodeasa River (Sucevița)
・ Voievodeasa River (Toplița)
・ Voievodu River
・ Voievodyn waterfall
・ Voieåsen
・ Voight
・ Voight Nunatak
・ Voigny
・ Voigt
・ Voigt effect
・ Voigt notation
・ Voigt pipe
Voigt profile
・ Voigt-Thomson law
・ Voigt/465
・ Voigtland State Railway
・ Voigtlander 90mm F3.5 APO-Lanthar SL II
・ Voigtländer
・ Voigtländer Bessamatic
・ Voigtländer Brillant
・ Voigtländer Ultramatic CS
・ Voigtsdorf
・ Voigtstedt
・ Voika
・ Voila
・ Voila (album)
・ Voila!


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Voigt profile : ウィキペディア英語版
Voigt profile
,
~~~z=\frac
}}
In spectroscopy, the Voigt profile (named after Woldemar Voigt) is a line profile resulting from the convolution of two broadening mechanisms, one of which alone would produce a Gaussian profile (usually, as a result of the Doppler broadening), and the other would produce a Lorentzian profile. Voigt profiles are common in many branches of spectroscopy and diffraction. Due to the computational expense of the convolution operation, the Voigt profile is often approximated using a pseudo-Voigt profile.
All normalized line profiles can be considered to be probability distributions. The Gaussian profile is equivalent to a Gaussian or normal distribution and a Lorentzian profile is equivalent to a Lorentz or Cauchy distribution. Without loss of generality, we can consider only centered profiles which peak at zero. The Voigt profile is then a convolution of a Lorentz profile and a Gaussian profile:
:
V(x;\sigma,\gamma)=\int_^\infty G(x';\sigma)L(x-x';\gamma)\, dx'

where ''x'' is frequency from line center, G(x;\sigma) is the centered Gaussian profile:
:
G(x;\sigma)\equiv\frac}

and L(x;\gamma) is the centered Lorentzian profile:
:
L(x;\gamma)\equiv\frac.

The defining integral can be evaluated as:
:
V(x;\sigma,\gamma)=\frac{\sigma\sqrt{2}}.

==Properties==

The Voigt profile is normalized:
:
\int_^\infty V(x;\sigma,\gamma)\,dx = 1

since it is the convolution of normalized profiles. The Lorentzian profile has no moments (other than the zeroth) and so the moment-generating function for the characteristic function for the Cauchy distribution is well defined, as is the characteristic function for the normal distribution. The characteristic function (probability theory)

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Voigt profile」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.